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Electrocardiography Laboratory Appendix:  
Calculating Potential Differences in a Dipole Field 

Swarthmore College Introductory Physics for the Life Sciences 

The goal of this analysis is to relate measured potential differences on the surface of the body to 
the components of the heart’s electric dipole moment. 
Consider an electric dipole consisting of charges ±q at x = a and x = -a. The 
potential of the dipole at any location  can be found by adding the 
potentials of the individual charges: 

   (A.1) 

If we embed this dipole in a dielectric with dielectric constant k, the 
potential, like the electric field, is reduced by a factor of k: 

      (A.2) 

 
In the dipole investigation at the beginning of lab, you found from an 
electric field diagram that for a horizontal dipole, is constant along 
the y-axis. You can now confirm this mathematically. Apply (A.2) to any 
location  on the y-axis; , as shown in the figure, and consequently 

 at any y. As a result, produced by this dipole between any locations y1 and 

y2 on the y-axis is zero:1  
        (A.3) 

  
Now consider finding the potential difference between two points on the x-axis that are equal 
distances r from the origin (at x = r and x = -r). The potential at x = r is given by 

  (A.4) 

Using the definition of the magnitude of the dipole moment , in the case r >>a, the 
denominator of the fraction can be approximated as r2 and this can be written as 

          (A.5) 

The same procedure gives the potential at x = -r as 

   (A.6) 

                                                        
1 Clarification of a possibly confusing point: Not only is  constant, its value happens to be zero; what matters is that 

has the same value for any y, so that the potential difference between any two points on the y-axis is zero. 
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The potential difference between x = +r and x = -r is therefore 

       (A.7) 

The dipole moment of a dipole constructed this way points in the positive x-direction. The 
heart’s dipole moment changes direction during the cardiac cycle, so this is not a complete 
model of the heart’s dipole moment. However, the heart’s dipole moment  can always be 
written as the sum of x- and y-components  and . For a dipole with its dipole 
moment in the y-direction, everything we worked out above applies with x and y switched, so 
now the x-axis is an equipotential and (A.7) gives the potential difference between locations y = 
±r on the y-axis.  
 
Here is the really useful (and cool) point: For any electric dipole, because the axis perpendicular 
to the dipole is an equipotential, the potential difference between two points on the x-axis 
depends only on the x-component of the dipole , and the potential difference between two 
points on the y-axis depends only on . So, in an electrocardiogram, we can measure DV 

between two points on a horizontal line (Lead I) to determine , and we can measure DV 
between two points on a vertical line to determine . In other words, if is measured 

between ±x and if is measured between ±y: 

  and       (A.8) 

 
which can be solved to give  
  and .     (A.9) 
 
It turns out that the complexities of human physiology make it difficult to directly measure a 
potential difference along a vertical line. Due to the way the electric field spreads through the 
body, it turns out that effectively Lead II is located at 60° to Lead I. Consequently, we use 
trigonometry to calculate  from the Lead I and Lead II measurements as follows. 
 
Consider a dipole oriented at an arbitrary angle q as shown. The 
horizontal and vertical components  and are given by  

  and  .    (A.10) 
The component of the dipole along Lead II, which we can notate , 
is given by  
      (A.11) 
which can be simplified using an angle difference formula to 

    (A.12) 

We can then solve for  in terms of  and : 
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    (A.13) 

Finally, we note that the relationship we found above between  and and the voltages 
measured along the corresponding axes is true for any combination of a dipole component and 
the voltage measured along the corresponding axis. So, it is also true that the component of the 
heart’s dipole along Lead II is related to the Lead II voltage by 
          (A.14) 
If the distances at which the leads are all measured are roughly equal, , we can 
approximate the components of the dipole moment from: 
 Horizontal:    

 Vertical:    

This pair of equations is true at every instant in time. Within the limits of the approximation 
that the distances are all the same, the proportion between any component of the dipole 
moment and the corresponding voltage is the same. Therefore, to plot the time-dependent 
dipole moment, you can do the calculations and plotting just using the voltages.  
 
 
To find the maximum dipole moment, find the peak signal in whichever lead shows the 
strongest signal, and then find the value of the other lead at that same instant of time. Then, use 
the corresponding and  to find the maximum dipole moment. 
 
There are a lot of approximations involved here! Probably the most significant is that the 
effective angle between Leads I and II will vary somewhat patient by patient due to the 
patient’s anatomy; the clinical electrocardiogram uses twelve leads to obtain a more 
comprehensive picture of the three-dimensional behavior. We are doing this simplified analysis 
so that you understand the basic physics and get a feel for the complex fields generated by the 
beating heart. If you go on to become a cardiologist, you’ll find that there are more 
sophisticated and hence more accurate ways to analyze the data. 
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