Assessing the impact of IPLS on physical reasoning Maya Tipton '23, Benjamin D. Geller, Catherine H. Crouch

Swarthmore College

Research Question

Compared to their peers with traditional introductory physics, are IPLS students better equipped to flexibly apply physical models in novel biological contexts?

IPLS

Introductory Physics for Life Sciences (IPLS) is designed to prepare and motivate life science students to use physics in biological and medical contexts.¹

- Same topics as traditional introductory physics,
- Explicit instruction in and emphasis on modeling biological phenomena.

Methods

We analyzed life science students' work on an end-ofsemester task given in IPLS (N = 61) and traditional (N = 37) mechanics. (Some life science students take the traditional course for scheduling reasons.)

Task:

- (a) Finding the blood pressure in a giraffe's brain, by using simple hydrostatics
- (b) Finding the pressure at the top of a tree, requiring them to identify whether to model flow as viscous or non-viscous, and incorporate gravity.
- (c) Interpreting the evolutionary implications of these two results, using the idea of negative pressure, introduced for the first time in the task.²

Coding

MT, BG, and CHC **iteratively** developed an emergent **code** for modeling and problem-solving competencies (parts (a) and (b)), and accuracy and coherence (c). Inter-rater reliability: 0.94 (a, b), 0.89 (c)

IPLS students demonstrate more skill justifying and flexibly combining models in novel biological contexts...

Justifying and flexibly combining models, IPLS Justifying and flexibly combining models, non-IPLS N = 37; μ = 1.9 $N = 61; \mu = 4.0$

...and more frequently offer coherent explanations when reasoning with new physical ideas.

Calculation score, non-IPLS

Number of Students	15 ——	
	10 ——	
	5 ——	
	0 —— 0.00	1.00

0.00

When reasoning with physical ideas that are introduced for the first time in the task, **IPLS and non-IPLS** students correctly interpret the physical consequences of a new concept at similar rates. $(\Delta \mu = 12\%; p = 0.70, \text{Mann-Whitney test})$

¹C. H. Crouch & K. Heller (2014) ² Inspired by J. D. Bransford & D. L. Schwartz (2001)

We thank Wingho Ko (Swarthmore Physics), non-IPLS instructor, for advising us about his course and administering the task; Eugenia Etkina (Rutgers), for suggesting an end-of-physics task; and our advisory board, Eric Brewe, Eric Kuo, Sanjay Rebello, Brad Davidson, & Todd Cooke. MT thanks peer colleagues Aqil Tarzan MacMood '20, Gwendolyn Rak '22, Jack Rubien '20. Research funded by NSF DUE-1710875 and Swarthmore College.

NSF 1710875

Research Question

When applying a simple model, **IPLS and non-IPLS** students exhibit similar modeling and problem-solving competencies. $(\Delta \mu = 6.8\%; p = 0.20, \text{ unpaired } t\text{-test})$

When choosing a model and flexibly combining models in a novel biological context,

• IPLS and non-IPLS students demonstrate comparable numerical skill once a model is selected.

• IPLS students are more likely to justify their modeling choices when prompted.

(p < 0.001, Mann-Whitney test)

References

Acknowledgements