
Does it stick? A longitudinal study of introductory physics for life sciences at a small college

Ben Geller and Catherine Crouch Swarthmore College

Physics Education Research Conference July 11, 2024

An interdisciplinary team effort!

Sara Hiebert Burch (Biology

Ann Renninger (Swarthmore Ed.)

Chandra Turpen

Stephen Hackler (Swarthmore Physics)

Rubien '20

Haley Aqil Solomon '20 Gerardi '17 MacMood '20

Nikhil Tignor '24

White'24

Brandon Daniel-Morales '24

NSF 1710875

NSF 2142074

Maya Tipton '23

Nathaniel Peters '18

2

Panchompoo Wisittanawat '13

Lundy Angelina Tjia '26 Drake Roth '25 Zheng '26

Swarthmore College

- Small, highly *selective* and highly *diverse* liberal arts college (nearly 30% first-gen)
- ~1650 students total, *all undergraduates*
- Emphasis on creating meaningful *research opportunities* for students, and on *interdisciplinary learning*

IPLS students at Swarthmore:

- mostly pre-med or life science majors
- mostly (~80%) sophomores and juniors
- no formal bio/chem prereqs, but most have taken courses in both areas.

Longitudinal study (and prior work): Papers provided on our website

Today's talk

- 1. What is IPLS^{*} and what are we trying to learn about it?
- 2. Interest and relevance
- 3. Do skills endure?

*IPLS = Introductory Physics for Life Sciences

Today's talk

1. What is IPLS* and what are we trying to learn about it?

- 2. Interest and relevance
- 3. Do skills endure?

*IPLS = Introductory Physics for Life Sciences

BIO 2010, NRC (2003) Scientific Foundations for Future Physicians (2009), HHMI/AAMC Vision & Change, AAAS (2011) MCAT²⁰¹⁵ (2013)

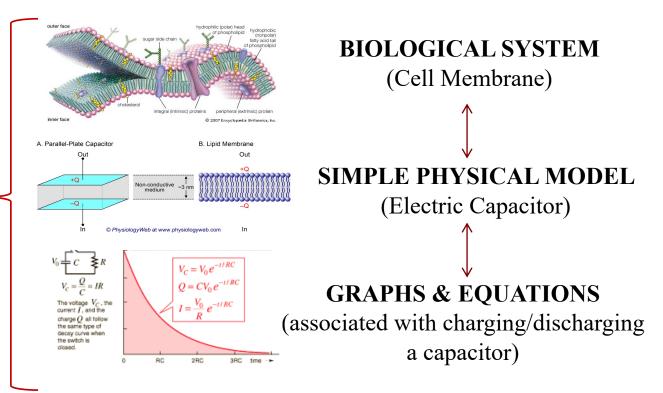
A (the?) central goal of IPLS*:

Make physics evidently valuable and meaningful for life science students, i.e., to **make it relevant**

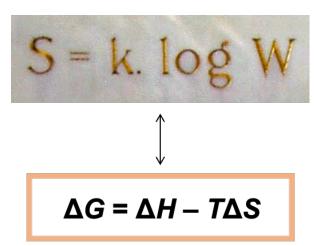
* "Introductory Physics for the Life Sciences"

To achieve this relevance^{*} requires knowing our students.

*Relevance: the quality or state of being <u>closely connected</u> or <u>appropriate</u>

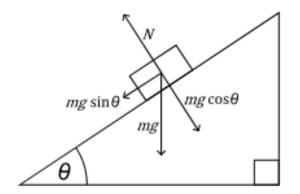

Relevance pertains to both content and skills...

... and we hope students develop positive *attitudes* about the relevance of physics


All the calls from professional society reports I showed Meredith & Redish, *Physics Today* (2013) Redish et al., *AJP* (2014) Crouch et al., *PR-PER* (2018) Geller et al., *PR-PER* (2018) Nair and Swatelle, *PR-PER* (2019)

Foster relevant scientific skills

Making IPLS relevant is not easy...

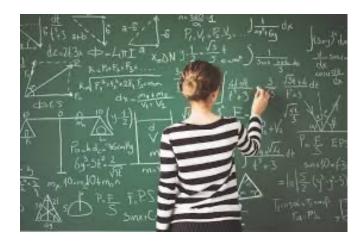


Does that "S" you are talking about have anything to do with the "S" in G = H - TSthat they talk about in biology and chemistry?

- Biology major taking intro physics

Disciplinary languages

Dreyfus et al., *AJP* (2014) Geller et al., *AJP* (2015) Making IPLS relevant is not easy...


When I think of physics, I think of things I don't see in real life, like frictionless surfaces...

– Biology major taking intro physics

Disciplinary expectations and anxieties

Bialek, *Science* (2004) Watkins et al., *PR-PER* (2012) Kuo et al., *PR-PER* (2014) Redish & Cooke, *CBE-LSE* (2013)

Making IPLS relevant is not easy...

I am not a physics person

- (many!) Biology majors taking intro physics

Personal identities as disciplinary scientists ^{Hal}_{Saw}

Hall et al. *PhD Dissertation* (2011) Sawtelle & Turpen, *PR-PER* (2015) How have we tackled these challenges at Swarthmore?

Design principles for supporting relevance

Foreground authentic connections between physics and the life sciences

✤ Expansive framing:

Watkins, Hall, Coffey, Cooke, and Redish, PRST-PER 2011.

Engle, Nguyen, and Mendelsohn, Instructional Science 39, 603 (2011).

IPLS design principles

Foreground authentic connections between physics and the life sciences

Expansive framing: Telling as well as showing the lasting value of what students learn promotes transfer and enduring learning

Use validated pedagogy!

Watkins, Hall, Coffey, Cooke, and Redish, PRST-PER 2011.

Engle, Nguyen, and Mendelsohn, Instructional Science 39, 603 (2011).

IPLS design process

Partner with disciplinary experts to identify authentic connections

Biology/biochemistry advisory committee

Rachel Merz

marine biologist

biomechanics

Kathy Siwicki neurobiologist

Liz Vallen cell biologist

Sara Hiebert Burch physiologist

Stephen Miller structural biologist

Name connections to other courses in class

Rachel Merz

marine biologist

biomechanics

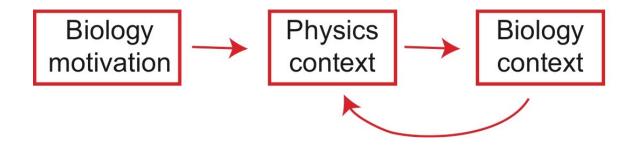
Kathy Siwicki neurobiologist

Liz Vallen cell biologist

Colleagues become advocates for our course

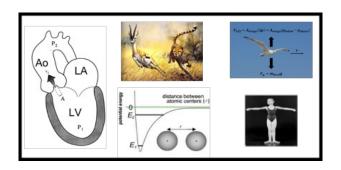
Sara Hiebert Burch physiologist

ch Kathleen Howard biophysical chemist

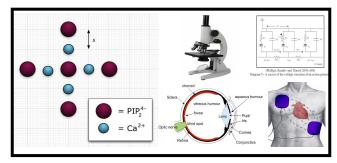

Stephen Miller structural biologist

IPLS design process

Partner with disciplinary experts to identify authentic connections


Build each course unit around connections

Reformed content with biological contexts


IPLS Mechanics

- Kinematics and Dynamics: *random vs. coherent motion, biomechanical stability*
- Energy: *chemical energy*
- Fluids: cardiology and flight
- Thermo: *heat conduction and free energy*

IPLS E&M

- Electricity/circuits: *cell membrane*, *nerve signaling*
- Magnetism and induction: *magnetic sensing*, *NMR*
- Optics: animal vision and microscopy
- Waves: echolocation

Reformed content with biological contexts Cell Biology **IPLS E&M IPLS** Mechanics • Electricity/circuits: *cell membrane*, • Kinematics and Dynamics: *random vs.* coherent motion, biomechanical stability *nerve signaling* • Magnetism and induction: *magnetic* Energy: *chemical energy* Animal sensing, NMR Neurobiology Physiology Fluids: cardiology and fligh Optics: animal vision and microscopy • Thermo: *heat conduction and free energy* Waves: *echolocation* (Bio)chemistry Ao distance between atomic centers ($= PIP_{o}^{4-}$ $= Ca^{2+}$

Reformed content with biological contexts

IPLS Mechanics

- Kinematics and Dynamics: *random vs. coherent motion, biomechanical stability*
- Energy: chemical energy
- Fluids: cardiology and flight
 Physiology
- Thermo: heat conduction and free energy

• Electricity/circuits: *cell membrane*, *nerve signaling*

IPLS E&M

- Magnetism and induction: *magnetic sensing*, *NMR* Neurobiology
- Optics: animal vision and microscopy
 Waves: echolocation

(Bio)chemistry

Animal

Curricula freely available at livingphysicsportal.org

Cell Biology

Biological connections are integral, not tacked on

Today's talk

1. What is IPLS^{*} and what are we trying to learn about it?

2. Interest and relevance

3. Do skills endure?

How does IPLS affect student attitudes to, interest in, and relevance of physics?

K. Ann Renninger (Ed. Studies) Panchompoo Wisittanawat '13

Comparing IPLS and standard instruction

For 2008-2015, only 2nd semester IPLS was offered

Compared pre-post changes in interest in and overall attitudes to physics for *same students* in

1st semester (standard mechanics)

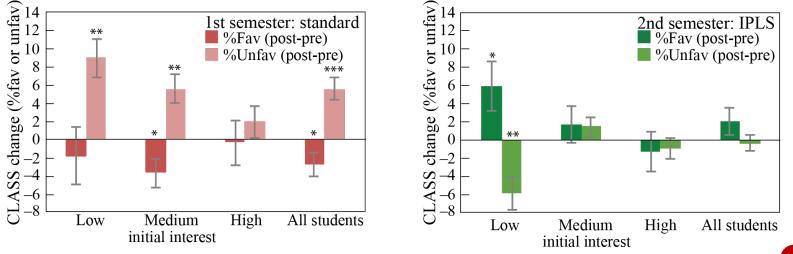
2nd semester (IPLS E&M)

Used CLASS as attitude measure

Adams et al., *PRPER* (2006) Douglas et al., *PRPER* (2014)

Comparing attitude changes across courses **STANDARD IPLS IPLS** (Low Initial Interest) change (%fav or unfav) (%fav or unfav) change (%fav or unfav) 14 14 4 2nd semester: IPLS %Fav (post-pre) 12 %Fav (post-pre) %Unfav (post-pre) %Unfav (post-pre) 10 0 108 8 8 6 6 6 change 2 0 ** 0 .2 -2 ASS SS S -6 Q Q * p < 0.05, ** p < 0.01, *** p < 0.001

Crouch, Wisittanawat, Cai, and Renninger, PRPER 14, 010111 (2018).

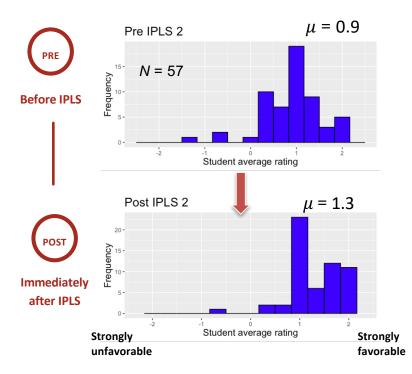

Comparing attitude changes across courses

STANDARD

Attitudes decline (normal)

Low initial interest group gains, others steady

Fully matched sample (N = 83), aggregated across three years


Crouch, Wisittanawat, Cai, and Renninger, PRPER 14, 010111 (2018).

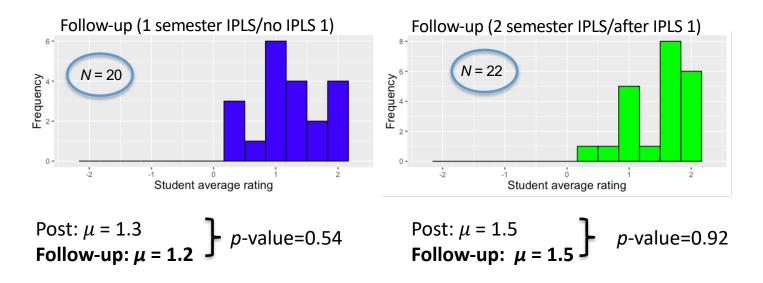
Relevance

Students respond to 3 Likert-scale items about connections between physics and biology

Items from K. Hall, Ph.D thesis, UMd (2014).

Relevance of physics pre/post IPLS

Gwendolyn Rak '22


Students view physics as much more connected to biology after one semester of IPLS

 $p = 4 \times 10^{-5}$

(Wilcoxon signed-rank test)

Items from K. Hall, Ph.D thesis, UMd (2014).

Greater relevance persists one year later

Engagement pathways as a way of characterizing student engagement in IPLS

COHERENCE PERSONAL MEANING Engagement Sensible and Interdisciplinary Explanatory Relevant and Connections Coherence Accessible Applicable

Geller, Crouch, and Turpen, Phys Rev PER 14, 010118 (2018).

Today's talk

1. What is IPLS^{*} and what are we trying to learn about it?

2. Interest and relevance

3. Do skills endure?

Research question

How well can students use physics learned in IPLS to analyze a biological situation?

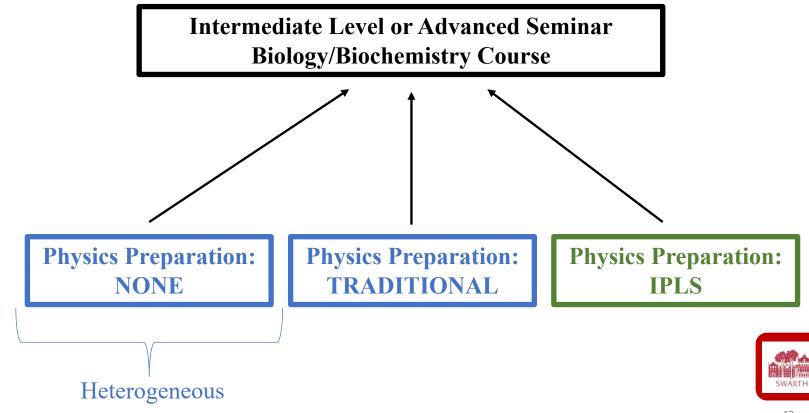
Research question

How well can students use physics learned in IPLS to analyze a biological situation presented in a biological setting?

Research question

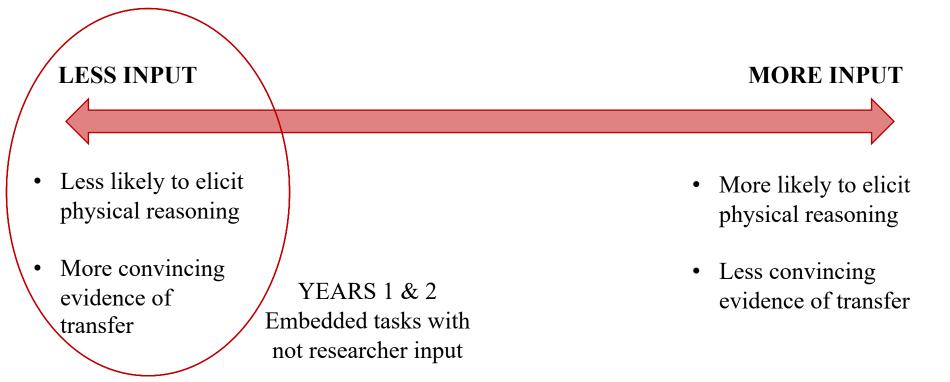
How well can students use physics learned in IPLS to analyze a biological situation presented in a biological setting and encountered (sometimes long) after the IPLS course ends?

A fortuitous curricular landscape at Swarthmore:

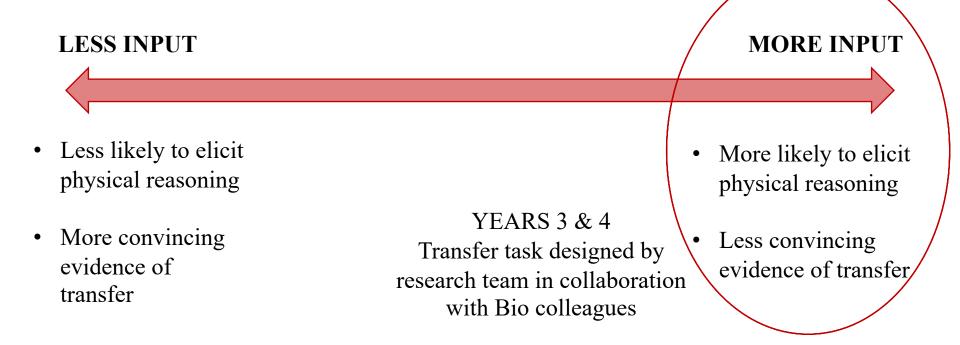

First Semester:
(Mechanics)IPLS 1Second Semester:
(E&M)IPLS 2

IPLS students:

- mostly pre-med or life science majors
- mostly sophomores and juniors
- no formal biology or chemistry prerequisites, but most have taken courses in both areas.



Physics is not a *requirement* for the biology major at Swarthmore:


Core methodological challenge:

• How much input should we have in designing the embedded tasks?

Core methodological challenge:

• How much input should we have in designing the embedded tasks?

Specific research question for this study:

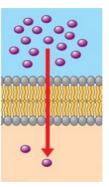
Compared to their peers who did not take IPLS, are IPLS students in a biology capstone course **more successful at coordinating between representations, and do they exhibit greater proficiency with mechanistic and general quantitative reasoning**?

Choice of the Biology Capstone Course*

All biology seniors take the course

- $\sim 60\%$ had taken at least *some* IPLS, $\sim 40\%$ had taken traditional or no physics
- ~40% had taken IPLS 1 specifically
- Task could be introduced as part of a general assessment of the quantitative course requirements in the biology department.

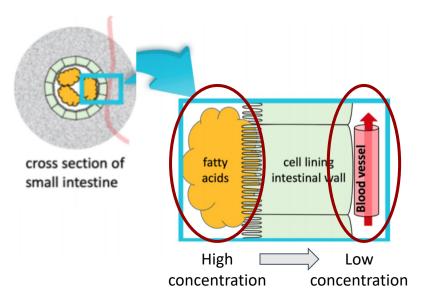
* Thank you to Michelle Smith at Cornell University for this methodological suggestion! We analyzed data from two iterations of the capstone course (Fall '19 and Jan '21).



Design of a Diffusion Task for the Biology Capstone

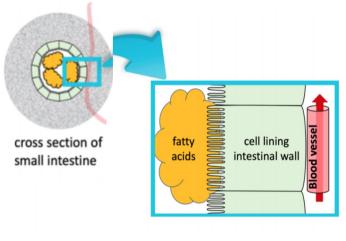
Why Diffusion?

- Central physical concept for cell/molecular biology
- All biology students learn about diffusion at a phenomenological level
- Diffusion is discussed in IPLS 1 at a mechanistic level



Design of a Diffusion Task for the Biology Capstone

Diffusion is presented in the context of animal digestion (not an IPLS context).



Students are asked to:

- Graph fatty acid concentration vs. position
- Describe the <u>*mechanism*</u> for diffusion
- Compare graphs and evaluate slopes
- Apply and reason with Fick's Law

Code for capstone task.

	- Part I		
Skill	Evidence of skill	Rubric	
Converting a written description of a biophysical scenario into a qualitatively accurate graph	Sketch of a graph that shows the fatty acid concentration to be constant in the intestine and the blood vessel, but linearly decreasing in the cell lining the intestinal wall	 Ends: +0.5 for each constant (horizontal) end of the sketched line Middle (QUANT): +2 points if linearly decreasing; +1 if decreasing, but not linearly For bar plot or scatter plot instead of a continuous graph: +1 if trend is correct 	
Providing a mechanistic, molecular-level explanation for the flow of molecules down a concentration gradient	Mechanistic explanation for the net flow of particles from high to low concentration in terms of the difference in number of particles moving randomly in different regions of the system, along with a supporting diagram.	 Explanation (IPLS 1): +2: Difference in number of molecules between high and low concentration regions used to provide a mechanism for the net flow of particles, even though each individual molecule moves randomly +1: Explains the flow in terms of general physical reasoning (collisions, thermodynamics, Fick's law), but does not employ a complete mechanistic explanation 0: Restates the question or no coherent explanation 	
		 Diagram (IPLS 1): +1: Diagram demonstrates why more molecules move across a boundary from high to low concentration than from low to high concentration +0.5: Diagram is present, but does not clearly articulate the above idea 0: No diagram 	
Skill	Part II Evidence of skill	Rubric	TABLE II
Calculating rates of diffusion from graphical representations of	Calculation of slopes from the data provided, and comparison of these slopes to rank diffusion rates	Correctness (QUANT): • +2: Completely correct ranking: B > A = D > C.	Skill
concentration as a function of position.		• +1: Slope <i>B</i> is steepest and slope <i>C</i> is least steep but slopes <i>A</i> and <i>D</i> are not identified as having	Converting

ABLE II. (Continued)

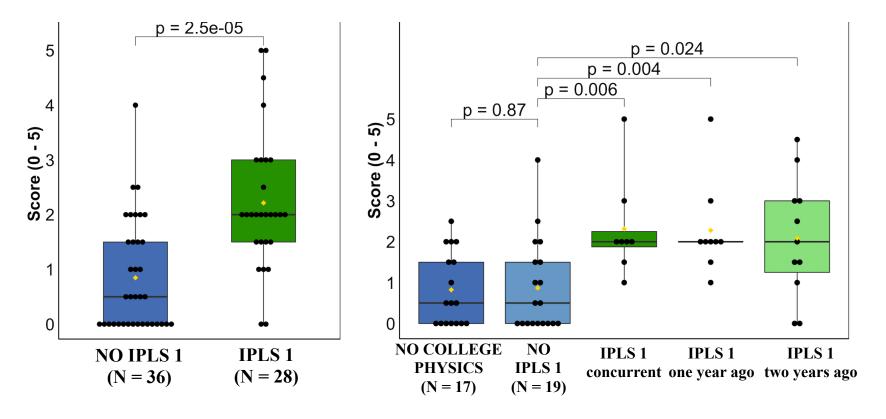
Skill	Evidence of skill	Rubric			
Calculating rates of diffusion	Calculation of slopes from the data provided, and comparison of these slopes to rank diffusion rates	Correctness (QUANT):	Part I		
from graphical representations of concentration as a function of position.			Skill	Evidence of skill	Rubric
	Part III		Converting a graphical representation of diffusion into a quantitative, symbolic representation (Fick's law) that can be applied to obtain a quantitative result	Using Fick's Law to calculate a rate of flux, including appropriate units, from graphical data provided; explicitly coordinating the minus sign in Fick's law with a spatial direction	 End regions (QUANT): +1: Identifies the ends as J = 0 Middle region (QUANT): +1: Calculation for the middle as J = 10000 molecules/s +1: Positive sign obtained by correct use of Fick's law Holistic over all of Part III (IPLS 1):
Skill	Evidence of skill	Rubric			• +2: Coordinates the positive sign to the direction
Relating the mathematical expression of Fick's law to the physical process of molecules moving from areas	Explanation that explicitly relates the minus sign in Fick's law to the direction of molecular movement through the concentration gradient	• (QUANT) +1: The minus sign is needed to specify direction of flux			 of flow along the x axis +1: Attempts to relate the sign to the coordinate system, but unsuccessfully

Emergent coding scheme

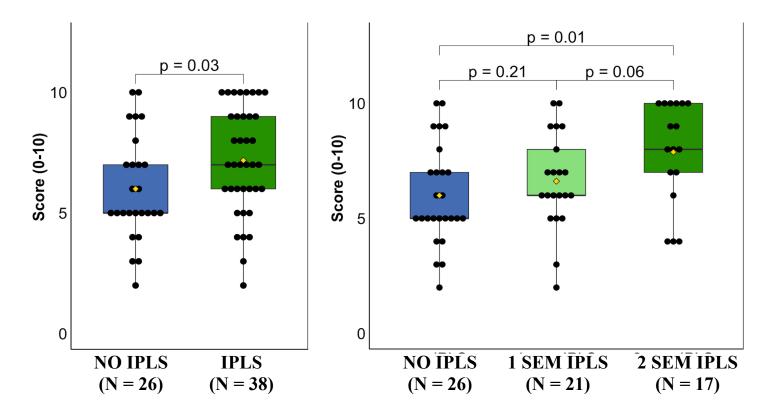
Content and Skills Emphasized in IPLS 1

- Mechanistic description of diffusion
- Coordinating multiple representations of diffusion
- Coordinating the sign of particle flux with a direction in space

General Quantitative Skills Emphasized in IPLS (and elsewhere)


- Draw linearly decreasing graph
- Compare graphs by their slopes
- Use equations to calculate relevant quantities
- Reason with units

Jack Rubien '20

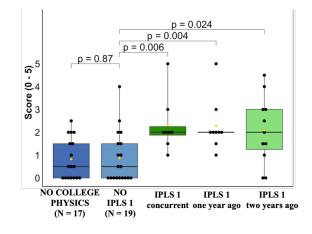

Cohen's kappa > 0.8 for all elements

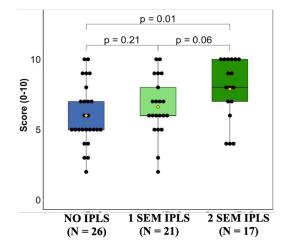
Content and skills emphasized in IPLS 1

Geller et al., *PR-PER* (2022) 52

General quantitative skills

Geller et al., *PR-PER* (2022) 53


Are IPLS students just higher performing?


IPLS students had lower overall GPA in STEM courses than the non-IPLS students.

Code elements	Observed difference in mean $\Delta \mu$	Adjusted difference in mean
<i>IPLS 1-specific</i>	$\mu_{\mathrm{IPLS1}} - \mu_{\mathrm{non-IPLS1}} = 1.36$	1.50 (+ 0.14)
<i>General quantitative</i>	$\mu_{\mathrm{IPLS1}} - \mu_{\mathrm{non-IPLS1}} = 1.18$	1.19 (+ 0.01)

Conclusion I: **IPLS 1 students successfully reason about diffusion in a novel biological context, even after 2+ years**

Conclusion 2: **IPLS students demonstrate greater proficiency with quantitative reasoning in a biology context**

Takeaways

IPLS students:

- ✤ Gain interest via multiple engagement pathways
- Gain enduring sense of relevance of physics to biology
- Successfully reason about diffusion in a novel biological context, even after 2+ years
- Demonstrate greater proficiency with quantitative reasoning in a biology context

Today's talk

1. What is IPLS^{*} and what are we trying to learn about it?

- 2. Interest and relevance
- 3. Do skills endure?

4. Current study: How does the course produce these outcomes?

*IPLS = Introductory Physics for Life Sciences

Small school takeaways

Curriculum development and PER can synergize
Leverage deep relationships with students and colleagues

Downstream outcomes

IPLS efforts at Swarthmore:

- ♦ Strengthened faculty partnerships
 → later Inclusive Excellence efforts
- ✤ Synergized with existing College goals (HHMI grant)
 → resources

Thank you to.....

Sara Hiebert Burch Ann Renninger (Biology (Educational Studies)

Chandra Turpen

Project advisors:

Andrew Boudreaux, Todd Cooke, Eric Brewe, Eric Kuo, Tim Nokes-Malach, Sanjay Rebello, Laura Rios

Andrew Mason, Carina Rebello, Tianlong Zu (PERC organizers)

Jack Rubien '20

Maya

Tipton '23

Haley Aqil Jonathan Gerardi '17 Solomon '20 MacMood '20

NSF 1710875 NSF 2142074

Angelina Tjia '26

Drake Roth '25

Stephen Hackler (Swarthmore Physics)

Nikhil Tignor '24

Gwendolyn

Rak '22

White'24

Nathaniel

Peters '18 Wisittanawat '13

Panchompoo

Brandon Lundy Daniel-Morales '24 Zheng '26