Characterizing "Physics Affinity" in Introductory Physics for Life Sciences at Three Institutions

Nikhil Tignor '24 Swarthmore College

NSF 2142074

Swarthmore IPLS Curriculum

IPLS Mechanics

IPLS E&M

Kinematics and Dynamics: *random vs. coherent motion, biomechanical stability*

Energy: chemical energy

Fluids: cardiology and flight

Thermo: *heat conduction and free energy*

Electricity/circuits: cell membrane, nerve signaling

Magnetism and induction: *magnetic sensing, NMR*

Optics: animal vision and microscopy

Waves: echolocation

Prior Longitudinal Findings at Swarthmore

Attitudes and skill gains that were durable over at least a year

Geller & Tipton et al., PR-PER (2022), Geller & Rubien et al., PR-PER (2022), Rak et al., AAPT Talk (2020).

Data Streams to Investigate Source of IPLS Gains

"Physics Affinity"

Example Item

Project Question: How do students' Physics Affinity scores develop in response to different instructional environments?

Characterizing Instructional Environments

"Yellow U"

- Large public research university
- Very experienced instructor
- Relatively little LS connection
- Carefully crafted learning progression

"Blue U"

- Large R1 university
- Two instructors, both new to institution
- Instr. 1: almost no LS integration
- Instr. 2: many more LS connections

Swarthmore College

- Small liberal arts college
- Instr. 1: prioritized comfortable class environment, modest LS connections
- Instr. 2: prioritized LS connections, gave more challenging assessments

Pre to Post Mean Physics Affinity

Pre to Post Mean Physics Affinity

Change in Affinity

Swarthmore F22: PA Change vs Pre

Change in Affinity: Initial Affinity Levels

Low Pre-PA

μ_{ΔPA} = 0.43

Medium Pre-PA

 $\mu_{\Delta PA} = -0.11$ ns

*

High Pre-PA

 $\mu_{\Delta PA} = 0$ ns

 $N_L = 6, N_M = 17, N_H = 7$

Pre to Post Interest

Pre to Post Self-Efficacy

Pre to Post Relevance

Summary

- "Yellow U" instructor achieved notable gains in self-efficacy without corresponding gains in interest or relevance, in a course with very few LS connections
- "Blue U" students began with significantly lower affinity, which decreased over the course of the semester, but instruction emphasizing LS connections dramatically mitigated those losses.
- At Swarthmore, the overall PA scores increased significantly with instructor 2, while only low initial affinity students showed significant gains with instructor 1
 Both instructors used the same curriculum, but instructor 2 emphasized life
 - Both instructors used the same curriculum, but instructor 2 emphasized life science connections more dramatically via messaging and course structure
 - The next talk will unpack differences in instructor priorities and detailed course choices

Conclusion

- Characterized LS student gains in three dimensions of physics affinity at multiple institutions
- Established baseline outcome at Blue U before possible intervention
- Established physics affinity outcomes from a variety of instructional environments and curricular choices

Thank you for listening!

Acknowledgements

Lundy Zheng '26

Catherine H. Crouch

Stephen Hackler

Thanks to Drake Roth and Angelina Tjia for development of introductory slides.

Advisory board: Andrew Boudreaux, Eric Brewe, Tim Nokes-Malach, Ann Renninger, Laura Ríos

Drake Angelina Roth '25 Tjia '26

Collaborators: Lili Cui, Alfredo Sanchez, Dan Young

Swarthmore PER talk slides and posters:

PERC poster: Weds 4:10 PM (PERC Poster Session 1)

Any Questions?